公开数据集
数据结构 ?
5.06M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
This dataset is collected from UCI Machine Learning Repository through the following link: https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification#
Data Set Information:
The data used in this study were gathered from 188 patients with PD (107 men and 81 women) with ages ranging from 33 to 87 (65.1?±10.9) at the Department of Neurology in Cerrahpa??a Faculty of Medicine, Istanbul University. The control group consists of 64 healthy individuals (23 men and 41 women) with ages varying between 41 and 82 (61.1?±8.9). During the data collection process, the microphone is set to 44.1 KHz and following the physiciana€?s examination, the sustained phonation of the vowel /a/ was collected from each subject with three repetitions.
Attribute Information:
Various speech signal processing algorithms including Time Frequency Features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform based Features, Vocal Fold Features and TWQT features have been applied to the speech recordings of Parkinson's Disease (PD) patients to extract clinically useful information for PD assessment.
Citation Request:
If you use this dataset, please cite: Sakar, C.O., Serbes, G., Gunduz, A., Tunc, H.C., Nizam, H., Sakar, B.E., Tutuncu, M., Aydin, T., Isenkul, M.E. and Apaydin, H., 2018. A comparative analysis of speech signal processing algorithms for Parkinsona€?s disease classification and the use of the tunable Q-factor wavelet transform. Applied Soft Computing, DOI: [Web Link] https://doi.org/10.1016/j.asoc.2018.10.022
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。