Select Language

AI社区

公开数据集

dbahn旅行了

dbahn旅行了

205.41M
674 浏览
0 喜欢
0 次下载
0 条讨论
Transportation,Rail Transport Classification

数据结构 ? 205.41M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context The goal of this dataset was using available online information from the German railway service (DBAHN) in order to create a set of data that allow the user to analyze the state of the different train lines at different points throughout the country. The source used to obtain the data is the DBAHN‘s website, with web-scraping tools created in Python. Content Data will be captured each minute adding a line in the log: # Request Url example `https://reiseauskunft.bahn.de/bin/bhftafel.exe/dn?&country=DEld=15082&seqnr=4&protocol=https:&input=Berlin%238011160&ident=fi.0865482.1497188234&rt=1&productsFilter=1111100000&time=11:00&date=20.06.19&ld=15082&start=1&boardType=arr&rtMode=DB-HYBRID HTTP/1.1` The result is that there are multiple entry for the same train/travel. So it′s posible to observe the evolution of delays, alerts, etc.. `2019-06-20 11:09:41 DEBUG: RESULT_ROW TAA-|TA-|TIN-S 7|TIR-Potsdam Hbf (S) 10:21-Berlin Wannsee (S) 10:32-Berlin-Nikolassee 10:35-Berlin-Grunewald 10:42-Berlin Westkreuz 10:45Berlin Bellevue 10:55-Berlin Hbf (S-Bahn) 10:58|TSI-8011160|TIM-arr|TIL-/bin/traininfo.exe/dn/789990/646057/632576/52969/80?ld=15082&country=DEU&protocol=https:&seqnr=4&ident=fi.0865482.1497188234&rt=1&date=20.06.19&time=10:58&station_evaId=8089021&station_type=arr&rtMode=DB-HYBRID&|TIRE-Potsdam Hbf (S)|TIP-15Berlin Hbf (S-Bahn)|TIT-10:58|TID-20.06.19|TSC-Berlin%238011160 ` ## Columns explanation - TAA: Alerts (@@ separated) - TA: Delay hour (before was in minutes) need to be compared with TIT column - TIN: Train Model - TIR: Route - TSI: Station ID - TIM: Direction departura/arrival - TIL: Request with parameters - TIRE: Destination - TIP: Platform number - TIT: Departure hour - TID: Date - TSC: Station Name and ID - TAc: delay in minutes ( TA - TIT ) Inspiration - models of trains with more failures - more confluent cities - cities that are bottlenecks - breakdown forecast - ...
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 674浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享