公开数据集
数据结构 ? 0M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Online
[Website](http://kmap.xjtudlc.com/pdd)
[Github](https://github.com/wangmengsd/pdd-graph)
[DataHub](https://datahub.io/tl/dataset/pdd-graph)
[SPARQL endpoint](http://kmap.xjtudlc.com/pdd/dataset.html?tab=query&ds=/pdd)
You can query some of the data online there. There is also the download link. Of course you can download it here.
Context
Electronic medical records contain multi-format electronic medical data that consist of an abundance of medical knowledge. Facing with patients symptoms, experienced caregivers make right medical decisions based on their professional knowledge that accurately grasps relationships between symptoms, diagnosis, and treatments. We aim to capture these relationships by constructing a large and high-quality heterogeneous graph linking patients, diseases, and drugs (PDD) in EMRs.
Content
Specifically, we extract important medical entities from MIMIC-III (Medical Information Mart for Intensive Care III) and automatically link them with the existing biomedical knowledge graphs, including ICD-9 ontology and DrugBank. The PDD graph presented is accessible on the Web via the SPARQL endpoint, and provides a pathway for medical discovery and applications, such as effective treatment recommendations.
A subgraph of PDD is illustrated in the followng figure to betterunderstand the PDD graph.
![enter image description here][2]
Acknowledgements
# Author
Data set belongs to Meng Wang, Jiaheng Zhang, Jun Liu,Wei Hu, Sen Wang, , Wenqiang Liu and Lei Shi
They come from:
1. MOEKLINNS lab, Xi’an Jiaotong University, Xi’an, China
2. State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China
3. Griffith Universtiy, Gold Coast Campus, Australia
Some Email:
- Meng Wang:wangmengsd@stu.xjtu.edu.cn
- Lei Shi:xjtushilei@foxmail.com
- Jun Liu:liukeen@xjtu.edu.cn
# Research
The paper is being reviewed and is not easily disclosed.So it can't be linked here.
Inspiration
If you have any questions, please contact the email address above.
Do you have any suggestions ? And send them to an e-mail address above.
License
[![](https://i.creativecommons.org/l/by/4.0/88x31.png)](http://creativecommons.org/licenses/by/4.0/) This work is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
If your article needs to be reference our work , you can reference our github.
[1]: http://kmap.xjtudlc.com/pdd/
[2]: https://github.com/wangmengsd/pdd-graph/raw/master/example.png
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。