公开数据集
数据结构 ? 0.01M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
**Source:
Generated to model psychological experiments reported by Siegler, R. S. (1976).
Three Aspects of Cognitive Development. Cognitive Psychology, 8, 481-520.
**
Donor:
Tim Hume (hume '@' ics.uci.edu)
**Data Set Information:**
This data set was generated to model psychological experimental results. Each example is classified as having the balance scale tip to the right, tip to the left, or be balanced. The attributes are the left weight, the left distance, the right weight, and the right distance. The correct way to find the class is the greater of (left-distance * left-weight) and (right-distance * right-weight). If they are equal, it is balanced.
**Attribute Information:
1. Class Name: 3 (L, B, R)
2. Left-Weight: 5 (1, 2, 3, 4, 5)
3. Left-Distance: 5 (1, 2, 3, 4, 5)
4. Right-Weight: 5 (1, 2, 3, 4, 5)
5. Right-Distance: 5 (1, 2, 3, 4, 5)**
Relevant Papers:
Klahr, D., & Siegler, R.S. (1978). The Representation of Children's Knowledge. In H. W. Reese & L. P. Lipsitt (Eds.), Advances in Child Development and Behavior, pp. 61-116. New York: Academic Press
[Web Link]
Langley,P. (1987). A General Theory of Discrimination Learning. In D. Klahr, P. Langley, & R. Neches (Eds.), Production System Models of Learning and Development, pp. 99-161. Cambridge, MA: MIT Press
[Web Link]
Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University Press
[Web Link]
McClelland, J.L. (1988). Parallel Distibuted Processing: Implications for Cognition and Development. Technical Report AIP-47, Department of Psychology, Carnegie-Mellon University
[Web Link]
Shultz, T., Mareschal, D., & Schmidt, W. (1994). Modeling Cognitive Development on Balance Scale Phenomena. Machine Learning, Vol. 16, pp. 59-88.
[Web Link]
Papers That Cite This Data Set1:
Zhi-Hua Zhou and Yuan Jiang and Shifu Chen. Extracting symbolic rules from trained neural network ensembles. AI Commun, 16. 2003.
Jianbin Tan and David L. Dowe. MML Inference of Decision Graphs with Multi-way Joins and Dynamic Attributes. Australian Conference on Artificial Intelligence. 2003.
Peter Sykacek and Stephen J. Roberts. Adaptive Classification by Variational Kalman Filtering. NIPS. 2002.
Remco R. Bouckaert. Accuracy bounds for ensembles under 0 { 1 loss. Xtal Mountain Information Technology & Computer Science Department, University of Waikato. 2002.
Nir Friedman and Moisés Goldszmidt and Thomas J. Lee. Bayesian Network Classification with Continuous Attributes: Getting the Best of Both Discretization and Parametric Fitting. ICML. 1998.
Hirotaka Inoue and Hiroyuki Narihisa. Experiments with an Ensemble Self-Generating Neural Network. Okayama University of Science.
Alexander K. Seewald. Meta-Learning for Stacked Classification. Austrian Research Institute for Artificial Intelligence.
Alexander K. Seewald. Dissertation Towards Understanding Stacking Studies of a General Ensemble Learning Scheme ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Naturwissenschaften.
****
Original Source : https://archive.ics.uci.edu/ml/datasets/Balance+Scale
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。