Select Language

AI社区

公开数据集

命名实体识别(NER)从临床提取感兴趣的实体(例如,疾病名称、药物名称

命名实体识别(NER)从临床提取感兴趣的实体(例如,疾病名称、药物名称

249.01M
364 浏览
0 喜欢
0 次下载
0 条讨论
NLP,Health,Health Conditions,Model Comparison,Statistical Analysis,Artificial Intelligence Classification

Problem StatementClinical studies often require detailed patients’ information documented in clinical narratives. Named......

数据结构 ? 249.01M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Problem Statement

    Clinical studies often require detailed patients’ information documented in clinical narratives. Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task to extract entities of interest (e.g., disease names, medication names and lab tests) from clinical narratives, thus to support clinical and translational research. Clinical notes have been analyzed in greater detail to harness important information for clinical research and other healthcare operations, as they depict rich, detailed medical information.

    In this challenge, hackers are invited to extract all disease names from a given set of 20000 paragraphs/documents in the test set provided the labelled entities (diseases) for 30000 documents in the train set.

    For example, here is a sentence from a clinical report:

    We compared the inter-day reproducibility of post-occlusive reactive hyperemia (PORH) assessed by single-point laser Doppler flowmetry (LDF) and laser speckle contrast analysis (LSCI).

    In the sentence given, reactive hyperemia (in bold) is the named entity with the type disease/indication.


    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:15 去赚积分?
    • 364浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享