公开数据集
数据结构 ? 249.01M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Problem Statement
Clinical studies often require detailed patients’ information documented in clinical narratives. Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task to extract entities of interest (e.g., disease names, medication names and lab tests) from clinical narratives, thus to support clinical and translational research. Clinical notes have been analyzed in greater detail to harness important information for clinical research and other healthcare operations, as they depict rich, detailed medical information.
In this challenge, hackers are invited to extract all disease names from a given set of 20000 paragraphs/documents in the test set provided the labelled entities (diseases) for 30000 documents in the train set.
For example, here is a sentence from a clinical report:
We compared the inter-day reproducibility of post-occlusive reactive hyperemia (PORH) assessed by single-point laser Doppler flowmetry (LDF) and laser speckle contrast analysis (LSCI).
In the sentence given, reactive hyperemia (in bold) is the named entity with the type disease/indication.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。