公开数据集
数据结构 ? 484.08M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
# Context
The dataset is a csv file compiled using a python scrapper developed using Reddit's PRAW API. The raw data is a list of 3-tuples of [username,subreddit,utc timestamp]. Each row represents a single comment made by the user, representing about 5 days worth of Reddit data. Note that the actual comment text is not included, only the user, subreddit and comment timestamp of the users comment. The goal of the dataset is to provide a lens in discovering user patterns from reddit meta-data alone. The original use case was to compile a dataset suitable for training a neural network in developing a subreddit recommender system. That final system can be found [here][1]
A very unpolished EDA for the dataset can be found [here][2]. Note the published dataset is only half of the one used in the EDA and recommender system, to meet kaggle's 500MB size limitation.
# Content
user - The username of the person submitting the comment
subreddit - The title of the subreddit the user made the comment in
utc_stamp - the utc timestamp of when the user made the comment
# Acknowledgements
The dataset was compiled as part of a school project. The final project report, with my collaborators, can be found [here][3]
# Inspiration
We were able to build a pretty cool subreddit recommender with the dataset. A blog post for it can be found [here][4], and the stand alone jupyter notebook for it [here][5]. Our final model is very undertuned, so there's definitely improvements to be made there, but I think there are many other cool data projects and visualizations that could be built from this dataset. One example would be to analyze the spread of users through the Reddit ecosystem, whether the average user clusters in close communities, or traverses wide and far to different corners. If you do end up building something on this, please share! And have fun!
Released under [Reddit's API licence][6]
[1]: http://ponderinghydrogen.pythonanywhere.com/
[2]: https://github.com/cole-maclean/MAI-CI/blob/master/SubRecommender/EDA%20Notebook.ipynb
[3]: http://cole-maclean.github.io/blog/files/subreddit-recommender.pdf
[4]: http://cole-maclean.github.io/blog/RNN-Based-Subreddit-Recommender-System/
[5]: https://github.com/cole-maclean/MAI-CI/blob/master/notebooks/blog%20post.ipynb
[6]: https://www.reddit.com/r/%20reddit.com/wiki/api-terms
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。