Select Language

AI社区

公开数据集

基于许多不同类别的船舶/无船舶标记的卫星船舶图片数据集

基于许多不同类别的船舶/无船舶标记的卫星船舶图片数据集

4.4G
603 浏览
0 喜欢
6 次下载
0 条讨论
Business Classification

该数据集提供了来自可见光谱的光学航拍图像的海上场景。MASATI 数据集包含动态海洋环境中的彩色图像,它可以用于评估船舶检测方......

数据结构 ? 4.4G

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    该数据集提供了来自可见光谱的光学航拍图像的海上场景。MASATI 数据集包含动态海洋环境中的彩色图像,它可以用于评估船舶检测方法。每个图像可能包含一个或多个目标在不同的天气和光照条件下。数据集由 6212 个根据以下七类标记的卫星图像:陆地、海岸、海洋、船,多,海岸船和细节。


    Main class    Sub-class        #samples    Description
    ----------  ---------       --------    -----------
    Ship        Ship            1015        Sea with a ship (no coast).
                Detail            1789        Ship details.
                Multi            188            Multiple ships.
                Coast & ship    121            Coast with ships.
    Non-ship    Sea                1010        Sea (no ships).
                Coast            1054        Coast (no ships).
                Land            1035        Land (no sea).

    For evaluation we have defined three additional sets by grouping samples of several
    classes as follows:  

    - Set 1: Ship on high sea and ocean or high sea without ship.
    - Set 2: Set 1 plus two new subsets: ship on sea close to coast (then coast is visible),
             and coast (sea scene with coast visible but without ship).
    - Set 3: Set 2 plus three new subsets: ship image acquired at lower altitude compared
             with the set 1, land (inland this is without coastal areas), and multi
             (multiple instances of ships).

    We plan to continuously collect and upload new marine scenes. As researchers use the
    data, we will list results and benchmarks here. If you have any results on the data that
    you would like to be listed here, please contact us (jgallego AT ua DOT es)

    The dataset has been compiled between March and September of 2016 from different regions
    in Europe, Africa, Asia, the Mediterranean sea and the Atlantic and Pacific oceans.


    LICENSE AND ACCESS
    -------------------------------------------
    This dataset is shared only for non-profit research or educational purposes. If you use
    this dataset or a part of it, please respect these terms of use and reference the
    original work in which it was published.

    All data were obtained from Microsoft® Bing™ Maps. You can consult the Bing Maps terms
    of use at https://www.microsoft.com/maps/product/terms.html.
    Please read carefully the included file with the terms of use shown in Microsoft® Bing™
    Maps.


    FILE FORMAT
    -------------------------------------------
    The satellite images were acquired from Bing Maps in RGB and with different sizes, as
    size is dependent on the region of interest to be registered in the image. In general,
    the average image size has a spatial resolution around 512 x 512 pixels. The images are
    stored as PNG where pixel values represent RGB colors. The distance between targets and
    the acquisition satellite has also been changed in order to obtain captures at different
    altitudes.


    RELATED PUBLICATIONS (CITATION)
    -------------------------------------------
    Please, if you use this dataset or part of it, cite the following publication:

    @article{Gallego2017,
      author    = {Antonio-Javier Gallego, Antonio Pertusa, and Pablo Gil},
      title     = {Automatic Ship Detection from Optical Aerial Images with Convolutional
                   Neural Networks},
      journal   = {ISPRS Journal of Photogrammetry and Remote Sensing},
      year      = {2017},
    }

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:20 去赚积分?
    • 603浏览
    • 6下载
    • 0点赞
    • 收藏
    • 分享