公开数据集
数据结构 ? 9453.92M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
We use honeybees as a system to develop dense object detection and tracking algorithms. Human crowds, cells in a tissue, animal groups are all composed of densely packed highly similar objects in motion. Honeybees live on a 2D surface of the honey comb and are an easily accessible for imaging. Their movement is irregular and sometimes very rapid. Resolving tracking in such environment could help finding solutions for tracking in other multi-object systems.
Content
The dataset contains video frames of 2 recordings (recorded at 30fps and 70fps and named so) downsampled to 2fps. There is 360 frames of each recording, in addition the dataset contains text files with positions and orientation angles of bees in those frames images. The marked bees belong to selected regions with high bee density within 1024x1024 windows [as we describe here][1], the offsets of these windows are indicated in the data. There are 2 object classes: (1) fully visible bees, (2) abdomens of bees hidden inside cells of a honey comb. The orientation angle of objects of class 2 is always 0. The format of text files is:
offset_x offset_y class position_x position_y angle
Acknowledgements
This data was collected with the use of the generous funding of the [Okinawa Institute of Science and Technology][2]. We would also like thank all mechanical turk workers that provided great work to make our research possible.
Inspiration
Can we robustly detect bees in the images? How can we track the highly similar and dense individuals? Can ML help this task that has been so far intractable for computer vision?
[1]: https://groups.oist.jp/bptu/honeybee-tracking-dataset
[2]: http://oist.jp
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。