Select Language

AI社区

公开数据集

BDD100K

BDD100K

57.45G
353 浏览
0 喜欢
0 次下载
0 条讨论
Others 2D Box,2D Semantic Segmentation,Classification,2D Instance Segmentation,

数据结构 ? 57.45G

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    img The tasks are based on BDD100K, the largest driving video dataset to date supporting heterogenous multi-task learning. It contains 100,000 videos representing more than 1000 hours of driving experience with more than 100 million frames. The videos comes with GPU/IMU data for trajectory information. The BDD100K dataset now provide annotations of the 10 tasks: image tagging, lane detection, drivable area segmentation, object detection, semantic segmentation, instance segmentation, multi-object detection tracking, multi-object segmentation tracking, domain adaptation and imitation learning. These diverse tasks make the study of heterogenous multi-task learning possible.

    For the CVPR 2020 Workshop on Autonomous Driving, we host the multi-object detection tracking challenge on CodaLab detailed below. Challenges on the other tasks will be announced on our dataset website.

    Video Data
    Explore 100,000 HD video sequences of over 1,100-hour driving experience across many different times in the day, weather conditions, and driving scenarios. Our video sequences also include GPS locations, IMU data, and timestamps.
    Road Object Detection
    2D Bounding Boxes annotated on 100,000 images for bus, traffic light, traffic sign, person, bike, truck, motor, car, train, and rider. Instance Segmentation
    Explore over 10,000 diverse images with pixel-level and rich instance-level annotations.
    Driveable Area
    Learn complicated drivable decision from 100,000 images.
    Lane Markings
    Multiple types of lane marking annotations on 100,000 images for driving guidance.

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 353浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享