Select Language

AI社区

公开数据集

玻璃分类

玻璃分类

0.01M
356 浏览
0 喜欢
0 次下载
0 条讨论
Earth and Nature,Computer Science,Artificial Intelligence,Chemistry Classification

数据结构 ? 0.01M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    # Context This is a Glass Identification Data Set from UCI. It contains 10 attributes including id. The response is glass type(discrete 7 values) # Content Attribute Information: 1. Id number: 1 to 214 (removed from CSV file) 2. RI: refractive index 3. Na: Sodium (unit measurement: weight percent in corresponding oxide, as are attributes 4-10) 4. Mg: Magnesium 5. Al: Aluminum 6. Si: Silicon 7. K: Potassium 8. Ca: Calcium 9. Ba: Barium 10. Fe: Iron 11. Type of glass: (class attribute) -- 1 building_windows_float_processed -- 2 building_windows_non_float_processed -- 3 vehicle_windows_float_processed -- 4 vehicle_windows_non_float_processed (none in this database) -- 5 containers -- 6 tableware -- 7 headlamps # Acknowledgements https://archive.ics.uci.edu/ml/datasets/Glass+Identification Source: Creator: B. German Central Research Establishment Home Office Forensic Science Service Aldermaston, Reading, Berkshire RG7 4PN Donor: Vina Spiehler, Ph.D., DABFT Diagnostic Products Corporation (213) 776-0180 (ext 3014) # Inspiration Data exploration of this dataset reveals two important characteristics : 1) The variables are highly **corelated** with each other including the response variables: So which kind of ML algorithm is most suitable for this dataset Random Forest , KNN or other? Also since dataset is too small is there any chance of applying PCA or it should be completely avoided? 2) Highly **Skewed** Data: Is scaling sufficient or are there any other techniques which should be applied to normalize data? Like BOX-COX Power transformation?
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 356浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享