公开数据集
数据结构 ? 44.25M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Uncalibrated Accelerometer Data are collected from 15 participantes performing 7 activities. The dataset provides challenges for identification and authentication of people using motion patterns.
Data Set Information:
--- The dataset collects data from a wearable accelerometer mounted on the chest
--- Sampling frequency of the accelerometer: 52 Hz
--- Accelerometer Data are Uncalibrated
--- Number of Participants: 15
--- Number of Activities: 7
--- Data Format: CSV
Attribute Information:
--- Data are separated by participant
--- Each file contains the following information
---- sequential number, x acceleration, y acceleration, z acceleration, label
--- Labels are codified by numbers
--- 1: Working at Computer
--- 2: Standing Up, Walking and Going updown stairs
--- 3: Standing
--- 4: Walking
--- 5: Going UpDown Stairs
--- 6: Walking and Talking with Someone
--- 7: Talking while Standing
Relevant Papers:
--- Casale, P. Pujol, O. and Radeva, P.
'BeaStreamer-v0.1: a new platform for Multi-Sensors Data Acquisition in Wearable Computing Applications',
CVCRD09, ISBN: 978-84-937261-1-9, 2009
available on [Web link]
--- Casale, P. Pujol, O. and Radeva, P.
'Human activity recognition from accelerometer data using a wearable device',
IbPRIA'11, 289-296, Springer-Verlag, 2011
available on [Web link]
--- Casale, P. Pujol, O. and Radeva, P.
'Personalization and user verification in wearable systems using biometric walking patterns'
Personal and Ubiquitous Computing, 16(5), 563-580, 2012
available on [Web link]
Citation Request:
Casale, P. Pujol, O. and Radeva, P.
'Personalization and user verification in wearable systems using biometric walking patterns'
Personal and Ubiquitous Computing, 16(5), 563-580, 2012
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。