Select Language

AI社区

公开数据集

在 Python 中使用地理数据

在 Python 中使用地理数据

4.01M
217 浏览
0 喜欢
0 次下载
0 条讨论
Computer Science,Programming,News,Economics,Geospatial Analysis,Clustering Classification

数据结构 ? 4.01M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    By this short introduction using geospatial data in Python I combine three different types of data sources which can be implemented in one map. For this purpose I start with reading a .csv with random adresses in order to request geo coordinates from Google using its API and creating a new dataframe. I continue reading a zip folder into python with data from Natural Earth and geocode my first dataframe into a geo dataframe with the characteristics of geometry. It′s possible as well to construct a geodataframe manuelly by geopandas. Reading then geo spatial data from GeoJSON allows me to gain more exactly Polygons of the German districts for plotting them with previous geo dataframes into a unique map. In a 2nd jupyter notebook I continued with Agglomerative and K-Means Clustering for the gdp per capita data by manipulating the Natural Earth data sheet. In a following project I plan to start with SVM algorithms on these geo data. **view file "Using Geo Data in Python"**: https://bit.ly/2SN3oTl **view file "Agglomerative and Kmeans Clustering"**: https://bit.ly/2SN3D0H
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 217浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享