公开数据集
数据结构 ? 4.58M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Introduction
This dataset demonstrates the use of Gaussian processes (GPs) to learn and make inferences about traffic speed distribution over a city-wide road network (of Pittsburgh, Pennsylvania) at 3 different points in time (8 am, 2 pm, and 8 pm) on a typical weekday/weekend.
Content
The dataset contains 3 separate CSV files: training set, prediction set, and (road) segment data frame. The training set contains the observed (average) traffic speed over select road segments (where traffic sensors are installed) at 3 different times (8 am, 2 pm, and 8 pm) on a typical weekday/weekend over a multi-month period. Each road segment is specified by the longitude and latitude (x and y) coordinates of its two endpoints. The prediction set extends the (spatially inferred) traffic speeds over the entire road network of the city, covering all road segments where no sensors were installed. Similar to the training set, the coverage periods are at those 3 time points on a typical weekday/weekend.
The segment data frame only contains the x and y coordinates of the road segments in the city (described by the shapefile downloaded from http://www.wprdc.org/). This data frame is to be merged with the prediction set (given a time point and a day) in order to render the city-wide traffic speed distribution at that particular time.
Acknowledgements
For detailed description on data collection and curation as well as machine learning methodologies, refer to this paper: https://ieeexplore.ieee.org/abstract/document/7676341
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。