Select Language

AI社区

数据要素产业

科学网转:机器学习是什么

12-05 23:56 TAG: 转:机器学习是什么

这篇文章转自:http://hi.baidu.com/macula7/blog/item/8a3f22cd9587f81a00e92829.html

里面称作者是周志华,我无从考证,只是转载。个人感觉写得很不错。转载至此。

机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。

不少人其实并没有真正想过,这是不是自己喜欢搞的东西,只不过看见别人都在搞,觉着跟大伙儿走总不会吃亏吧。

问题是,真有个“大伙儿”吗?就不会是“两伙儿”、“三伙儿”?如果有“几伙儿”,那到底该跟着“哪伙儿”走呢?

很多人可能没有意识到,所谓的machine learning community,现在至少包含了两个有着完全不同的文化、完全不同的价值观的群体,称为machine learning "communities"也许更合适一些。

第一个community,是把机器学习看作人工智能分支的一个群体,这群人的主体是计算机科学家。

现在的“机器学习研究者”可能很少有人读过1983年出的“Machine Learning: An Artificial Intelligence Approach”这本书。这本书的出版标志着机器学习成为人工智能中一个独立的领域。它其实是一部集早期机器学习研究之大成的文集,收罗了若干先贤(例 如Herbert Simon,那位把诺贝尔奖、图灵奖以及各种各样和他相关的奖几乎拿遍了的科学天才)的大作,主编是Ryszard S. Michalski(此君已去世多年了,他可算是机器学习的奠基人之一)、Jaime G. Carbonell(此君曾是Springer的LNAI的总编)、Tom Mitchell(此君是CMU机器学习系首任系主任、著名教材的作者,机器学习界没人不知道他吧)。Machine Learning杂志的创刊,正是这群人努力的结果。这本书值得一读。虽然技术手段早就日新月异了,但有一些深刻的思想现在并没有过时。各个学科领域总有 不少东西,换了新装之后又粉墨登场,现在热火朝天的transfer learning,其实就是learning by analogy的升级版。

人工智能的研究从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,是有一条自然、清晰的脉络。人工智能出身的机器学习研究者,绝大部分 是把机器学习作为实现人工智能的一个途径,正如1983年的书名那样。他们关注的是人工智能中的问题,希望以机器学习为手段,但具体采用什么样的学习手 段,是基于统计的、代数的、还是逻辑的、几何的,他们并不care。

这群人可能对统计学习目前dominating的地位未必满意。靠统计学习是不可能解决人工智能中大部分问题的,如果统计学习压制了对其他手段的研 究,可能不是好事。这群人往往也不care在文章里show自己的数学水平,甚至可能是以简化表达自己的思想为荣。人工智能问题不是数学问题,甚至未必是 依靠数学能够解决的问题。人工智能中许多事情的难处,往往在于我们不知道困难的本质在哪里,不知道“问题”在哪里。一旦“问题”清楚了,解决起来可能并不 困难。

第二个community,是把机器学习看作“应用统计学”的一个群体,这群人的主体是统计学家。

和纯数学相比,统计学不太“干净”,不少数学家甚至拒绝承认统计学是数学。但如果和人工智能相比,统计学就太干净了,统计学研究的问题是清楚的,不象人工智能那样,连问题到底在哪里都不知道。在相当长时间里,统计学家和机器学习一直保持着距离。

慢慢地,不少统计学家逐渐意识到,统计学本来就该面向应用,而机器学习天生就是一个很好的切入点。因为机器学习虽然用到各种各样的数学,但要分析大 量数据中蕴涵的规律,统计学是必不可少的。统计学出身的机器学习研究者,绝大部分是把机器学习当作应用统计学。他们关注的是如何把统计学中的理论和方法变 成可以在计算机上有效实现的算法,至于这样的算法对人工智能中的什么问题有用,他们并不care。

这群人可能对人工智能毫无兴趣,在他们眼中,机器学习就是统计学习,是统计学比较偏向应用的一个分支,充其量是统计学与计算机科学的交叉。这群人对统计学习之外的学习手段往往是排斥的,这很自然,基于代数的、逻辑的、几何的学习,很难纳入统计学的范畴。

 
更多>数据要素产业相关信息
最新发布
点击排行