数据要素产业
心脑血管疾病被两会重点关注,AI能帮点儿什么?
2019年2月7日,武汉某医院急诊科,武汉理工大学职工黄先生(化名)因为胸痛在值班医生的安排下刚刚做完心脏CT,正在焦急等待结果。这一天正好是正月初三,门诊尚未开放,彼时的急诊大厅里乌泱泱全是各种看病的患者,值班医生桌前围满了病患,CT室门前更是“门庭若市”,焦虑写在每一个在走廊里的患者或家属身上,与春节的喜庆格格不入。
按照一般门诊流程,CT扫描完成后,需要1天时间来出具报告,在急诊科,这个流程缩短,但也需根据患者数量排队。春节期间的大吃大喝造成心脑血管问题加剧,若正常排序,已经胸痛难忍的黄先生怕是要面临不小的风险。
他的情况有些特殊。
2015年,黄先生出现胸闷症状,当年12月7日在武汉某医院确诊“前降支近中段重度狭窄”入院,12月12日成功进行了PCI手术,按心血管疾患的诊治规定,黄先生需要每年复查冠脉情况确保治理效果,并及时发现或有的潜在问题。2017年11月复查后,黄先生一直没有进行第二次例行复查。
接诊医生将这个情况电话通知CT科室医生后,报告医生这次处理很快,5分钟借助某AI冠脉辅助诊断系统打印了后处理图像,快速写好了报告:黄医生原手术部位被准确反映出来(未出问题),有新的冠脉狭窄问题需要处理,但问题不算严重。
这样的速度让经历过不少次CT检查过程的黄先生有些意外。事实上,黄先生是得益于早就在互联网科技创业浪潮中炒得火热的AI医疗,只不过,这次是碰到了真正落地的AI影像识别。
看见CT室门前那些病患或家人取报告的速度快了不少没有再形成积压,从事计算机教学的黄先生感慨,原来AI+医疗早就进入普通人的生活,为更多人的健康保驾护航。
就在黄先生这次诊疗一个月之后的两会,心脑血管疾病亦被重点关注,包括全国政协委员、北京大学第一医院心血管内科主任霍勇等在内,诸多与会者都提出了与心脑血管疾病救治相关的提案,在政府工作报告中更是首次提出“做好常见慢性病防治”,而心脑血管疾病无疑已经成为慢性病的“主力病症”。
AI医疗介入心脑血管疾病领域,已经十分必要。
心脑血管影像识别,AI医疗产品的高地
刚刚过去的冬天格外寒冷,加之春节、元宵大吃大喝的习惯,那段喜庆的节日里心脑血管疾病反而呈现高发态势。医院急诊室里的“盛况”,在更多城市里发生。
在典型的中部城市郑州,2月4日(农历除夕)上午8时至2月10日(农历大年初六)下午15时,120指挥调度大厅共派诊1738次,救援救治1538人次,这其中,心脑血管疾病发病率仍居“榜首”,占到27%。
越到中国人的喜庆日子,心脑血管科室门前就越热闹,也加剧了本就贫乏的医疗资源的紧张。据网络公开数据显示,我国医学影像数据的年增长率约为30%,而放射科医生数量的年增长率约为4.1%。这时候,心脑血管诊疗的AI应用需求进一步凸显出来。
AI+医疗是一个宽泛的概念,如图(来源:健康界):
医学影像占了大头,例如最近一两年,肺结节影像识别产品扎堆上线,影像识别的心脑血管玩家却十分稀少,该领域到目前为止仅出现一家名叫“数坤科技”的创业企业,不久前的2月18日刚刚宣布获得了2亿元B轮融资,获得社会关注。
大蛋糕玩家少肯定是有原因的:
1、技术角度:心脏砰砰跳,影像识别更难“对付”
CT简单说是通过某部位不同角度的多幅X光二维图像重建出立体的三维图像,由此确定病症。而人的器官中只有心脏是在短时间内频繁跳动的,且心血管本身还是一个极端复杂的网络,要重建心血管模型,并确定狭窄、病变,毫无疑问会比静态组织更难。
2、系统角度:病症太多太麻烦
乍一看黄先生所患的“前降支近中段重度狭窄”让人一头雾水,其实,“前降支”是冠脉血管的一支,“近中段”是其中的一段,“重度”是不同堵塞度的一个级别,可想而知,不同组合会产生多少种类。
而这,还只是“冠心病”的小类,其他与冠心病平级的还有主动脉夹层、大动脉炎等病症;识别工具上也有FFR(血管堵到什么样子了)、钙化积分(血管本身的质地怎么样)等多样化方式。心脑血管AI影像识别在产品层面必须是一个系统性的工程,单一的对症意义并不大。
3、流程角度:质量与效率“我全都要”
医学上的事都不能马虎,在肺结节、乳腺癌等领域搞错了是会耽误人命的,到了心脑血管这里同样如此。美国学者的研究发现,25%的冠心病患者首次发病即猝死。过去,黄先生等待3天时间才能拿结果是可以理解的,CT机扫描、繁琐的后处理、出具报告、医生审核,一环扣一环保证了准确率。
对AI来说,影像识别一方面要保证准确率,另一方面还需要尽可能精简过程,既要质量又要效率,难免有些困难。
真医疗AI产品的“德行”,从心脑血管影像识别可见一斑
上述难处反过来其实也定义了医疗AI辅助产品应有的要求,要达到被医院、被市场、被患者信赖,AI影像识别产品应至少做到三个层面,这方面,由于心脑血管领域的唯一性,数坤科技可作为仅有的案例,但其也有仍需进化之处。
1、不只“读片”,也解决系统性效率提升问题
影像方面除了技术上的“读片”,写报告、审核报告、经验积累等全流程闭环还有许多额外工作,正如长征医院影像学与核医学科教授刘士远所说,“好的AI助手解放医生,投入更多时间进行病情研究才是有意义的”。
说白了,医生们需要的是全流程医疗“基础设施改造”,仅将技术介入到旧有医疗流程环节其结果可能是医生使用不便、整体效率难以提升(参见自媒体“寻找中国创客”:《为什么大多数医疗影像AI都躺在医院吃灰?》)。
黄先生拿到的急诊结果,其中不只有病灶影像识别,整体流程优化也十分重要,数坤要建立的大数据早期预警、AI影像筛查、AI多学科综合精确诊断、个性化治疗方案规划与风险预测等全流程、全场景智能诊疗一体化平台,应当就是基于这种考虑。
2、看菜吃饭当然舒坦,但心脑血管得自己“炒菜”
心脑血管的影像识别少有开源资源,加之心血管疾病非常复杂,单纯的冠状动脉粥样硬化便需要诸多专业知识去辅助诊断,数坤的产品组合,即冠心病智能辅助诊断系统CoronaryDoc、冠脉FFRCT辅助评估系统、主动脉智能辅助诊断系统、头颈CT智能辅助诊断系统、CASCOREAI钙化积分等不同产品,便是AI影像识别的一种必需方式。
3、在影像识别这件事上,AI干啥、人干啥更要分得清
根据媒体采访,在AI影像识别实践中,医生们出现“用AI看一遍,自己再检查一遍”的情况。这是必须的,AI目前仅作为辅助医生的诊断工具,直接面对患者的仍然是医生。 因此,如何在严谨规则下建立AI与人分级协作机制变得十分重要。
方式肯定有很多种,既节省时间,又让“疑难杂症”由人工再把关。这里以数坤科技的置信度(判断可信度的统计学概念)机制为例,如果一份报告的置信度达到95%,医生基本不需要手动修改,只需要做复核。
相信更多类似的医疗AI协作机制将会在未来被开发。
带来全面的医疗价值,心脑血管AI影像识别产品还需两个维度的迁移
要带来全面的医疗价值(背后是商业价值),心脑血管AI影像识别产品还得要有两个维度的迁移能力。
1、更多医院应用:保证泛化应用的“鲁棒性”
“鲁棒性”是专有概念,指换个环境后系统还具备和之前环境里一样的能力——我给你这个工作条件你能干活,给你那个差一点或不一样的工作条件你还是能干出同样的结果。
不同医院的CT、核磁共振等设备不尽相同(如32排、64排),不同医生的设备操作能力、机器状态也会导致图像质量不尽相同,要实现医院的横向迁移,鲁棒性是必备的产品“品质”。
同样的系统,黄先生在A医院与B医院当然应以类似的速度得到一样的检查结果,其关键,是训练AI模型时用到的数据必须是来自实践的CT图像,同时具备高质量的专业医生标注,而不仅基于共享的标准图像,这就好像普通人学英语,广泛生活情境对话的才能告别聋哑英语。
2、更多病种应用:技术应进行共享共通
全球科技的发展往往首先来源于军事、航天等尖端技术建设,中国登月对其他军用、民用科技有直接的推动作用。医学界很多知识、方法也是相通的,作为技术壁垒高的影像识别,心脑血管也存在着被其他病种所通用的技术,推一及百。
数坤科技B轮融资时就对外宣称将加大研发投入,将其已在心脑疾病领域建立的优势延伸和覆盖心、脑、肺、乳腺、前列腺等重要疾病和临床场景。
创世伙伴资本创始主管合伙人周炜说,“相信数坤科技有实力成为医疗影像AI市场的第一。”先不论变成医疗影像AI市场第一这事靠不靠谱,至少,在心脑血管领域的技术领先、积累的行业认可要转化到全医疗影像上,首先考验的是数坤将产品、技术跨病种迁移的能力,对其他想要把自家产品扩展到更多病种上的玩家而言,也是相同的道理。
而具体要如何做,对数坤、对更多行业玩家而言将是另一个更复杂的故事了。