AI技术百科
2021 CVPR 最佳学生论文奖(Best Student Paper)
最佳学生论文奖(Best Student Paper)
Task Programming: Learning Data Efficient Behavior Representations(任务编程:学习数据有效的行为表征)
作者团队来自加州理工和西北大学——Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue, Pietro Perona
https://openaccess.thecvf.com/content/CVPR2021/html/Sun_Task_Programming_Learning_Data_Efficient_Behavior_Representations_CVPR_2021_paper.html
论文简介:
专门的领域知识对于准确注释用于深度分析训练集来说往往是必要的,但从领域专家那里获得这些知识可能会很麻烦,而且耗时。这个问题在自动行为分析(automated behavior analysis)中非常突出,在自动行为分析中,从视频跟踪数据中检测出代理的运动或感兴趣的行动。为了减少注释工作,我们提出了TREBA:一种基于多任务自监督学习的学习注释-样本高效轨迹嵌入(annotation-sample efficient trajectory embedding)的方法,用于行为分析。我们的方法中的任务可以由领域专家通过我们称之为 「任务编程」(task programming)的过程进行有效设计,该过程使用程序对领域专家的结构化知识进行明确编码。通过用数据注释时间换取少量编程任务的构建,可以减少领域专家的总工作量。我们使用行为神经科学的数据来评估这种trade-off,在这些数据中,专门的领域知识被用来识别行为。我们在两个领域的三个数据集中展示了实验结果:小鼠和果蝇。与最先进的特征相比,使用TREBA的嵌入,我们将注释负担减少了「10倍」,然而并不影响准确性。因此,我们的结果表明,任务编程和自我监督可以成为减少领域专家注释工作的有效途径。