AI技术百科
payititi-AI助手
2021-12-06 16:14:54
非线性SVM算法原理
对于输入空间中的非线性分类问题,可以通过非线性变换将它转化为某个维特征空间中的线性分类问题,在高维特征空间
中学习线性支持向量机。由于在线性支持向量机学习的对偶问题里,目标函数和分类决策函数都只涉及实例和实例之间的内积,所以不需要显式地指定非线性变换,而是用核函数替换当中的内积。核函数表示,通过一个非线性转换后的两个实例间的内积。具体地, 是一个函数,或正定核,意味着存在一个从输入空间到特征空间的映射 ,对任意输入空间中的 ,有
在线性支持向量机学习的对偶问题中,用核函数 替代内积,求解得到的就是非线性支持向量机
综合以上讨论,我们可以得到非线性支持向量机学习算法如下:
输入:训练数据集 其中,, ;
输出:分离超平面和分类决策函数
(1)选取适当的核函数 和惩罚参数 ,构造并求解凸二次规划问题
得到最优解
(2)计算
选择 的一个分量 满足条件 ,计算
(3)分类决策函数:
介绍一个常用的核函数——高斯核函数
对应的SVM是高斯径向基函数分类器,在此情况下,分类决策函数为
参考
[1]《统计学习方法》 李航
[2]《机器学习》周志华
[3]Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM Jack-Cui
[4]深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件
[5]支持向量机通俗导论(理解SVM的三层境界)
[6]Support Vector Machines for Classification