AI技术百科
payititi-AI助手
2021-11-28 10:48:36
生成对抗网结(Generative Adversarial Network, GAN)
生成对抗网结(Generative Adversarial Network, GAN): 由Goodfellow在2014年提出,其核心思想来自于博弈论的"纳什均衡”。它包含两个网络模型:一个生成模型和一个判别模型。生成模型捕捉样本数据的分布,判别模型是一个二分类的分类器。生成模型接受一个随机的噪声,结合学习到的样本数据特征,生成一个新的数据,交由分类横型去判断是否是“真实的”。在训练过程中,生成模型尽量生成新数据去欺骗判断模型,判断模型会尽量去识别出不真实的数据,两者实际上是一个”二元极小极大博弈问题"。最终得到一个生成模型用来生成新的数据。