Select Language

AI社区

AI技术百科

径向基函数神经网络(Radical Basis Function Neural Network, RBF NN)

径向基函数神经网络(Radical Basis Function Neural Network, RBF NN): 1988 年由 John Moody和Christian J Darken提出了一种网络结构,属于前向型神经网络,理论上可以任意精度逼近任意连续函数,适合解决分类问题。

径向基函数神经网络特征:
网络结构为三层前向网络
输入层到隐藏层无权重连接
隐藏层的激活函数为径向基函数(RBF)
从输入层到隐藏层的变换时非线性的
从隐藏层到输入层的变换时线性的

径向基函数(RBF ):某种沿径向对称的标量函数,通常定义为空间中某点到另外一个中心点的欧氏距离的单调函数。如果某点离中心点距离较远,则函数取值很小。


我要发帖
神经网络算法
2021-05-12 17:06:31加入圈子
  • 30

    条内容
神经网络是所谓深度学习的一个基础,也是必备的知识点,他是以人脑中的神经网络作为启发,最著名的算法就是backpropagation算法,这里就简单的整理一下神经网络相关参数,和计算方法。