AI技术百科
tianjing2020
2021-11-02 17:07:35
结构风险最小化 Structural Risk Minimization
结构风险最小化(Structural Risk Minimization)是指把函数集构造为一个函数子集序列,使各个子集按照VC维的大小排列;在每个子集中寻找最小经验风险,在子集间折中考虑经验风险和置信范围,取得实际风险的最小化。即SRM准则。
所谓的结构风险最小化就是在保证分类精度(经验风险)的同时,降低学习机器的 VC 维,可以使学习机器在整个样本集上的期望风险得到控制。
传统机器学习方法中普遍采用的经验风险最小化原则在样本数目有限时是不合理的,因此,需要同时最小化经验风险和置信范围。
机器学习过程不但要使经验风险最小,还要使VC维尽量小以缩小置信范围,才能取得较小的实际风险,即对未来样本有较好的推广性。
统计学习理论提出了一种新的策略,即把函数集构造为一个函数子集序列,使各个子集按照VC维的大小排列;在每个子集中寻找最小经验风险,在子集间折衷考虑经验风险和置信范围,取得实际风险的最小。这种思想称作结构风险最小化(Structural Risk Minimization),即SRM准则。
在有限训练样本下,学习机器的VC维越高则置信范围越大,真实风险与经验风险之间可能的差别越大.这就是为什么会出现过学习现象的原因。