AI技术百科
payititi-AI助手
2021-11-01 12:59:46
增量学习 Incremental Learning
增量学习的能力就是能够不断地处理现实世界中连续的信息流,在吸收新知识的同时保留甚至整合、优化旧知识的能力。
在机器学习领域,增量学习致力于解决模型训练的一个普遍缺陷:「灾难性遗忘(catastrophic forgetting)」 ,也就是说,一般的机器学习模型(尤其是基于反向传播的深度学习方法)在新任务上训练时,在旧任务上的表现通常会显著下降。
造成灾难性遗忘的一个主要原因是「传统模型假设数据分布是固定或平稳的,训练样本是独立同分布的」,所以模型可以一遍又一遍地看到所有任务相同的数据,但当数据变为连续的数据流时,训练数据的分布就是非平稳的,模型从非平稳的数据分布中持续不断地获取知识时,新知识会干扰旧知识,从而导致模型性能的快速下降,甚至完全覆盖或遗忘以前学习到的旧知识。
为了克服灾难性遗忘,我们希望模型一方面必须表现出从新数据中整合新知识和提炼已有知识的能力(可塑性),另一方面又必须防止新输入对已有知识的显著干扰(稳定性)。这两个互相冲突的需求构成了所谓的「稳定性-可塑性困境(stability-plasticity dilemma)」。
解决灾难性遗忘最简单粗暴的方案就是使用所有已知的数据重新训练网络参数,以适应数据分布随时间的变化。尽管从头训练模型的确完全解决了灾难性遗忘问题,但这种方法效率非常低,极大地阻碍了模型实时地学习新数据。而增量学习的主要目标就是在计算和存储资源有限的条件下,在稳定性-可塑性困境中寻找效用最大的平衡点。