AI技术百科
用Python实现机器学习算法——简单的神经网络
我们将通过层之间的权重矩阵来表示神经网络结构。在下面的例子中,输入层和隐藏层之间的权重矩阵将被表示为,隐藏层和输出层之间的权重矩阵为。除了连接神经元的权重向量外,每个隐藏和输出的神经元都会有一个大小为 1 的偏置量。
我们的训练集由 m = 750 个样本组成。因此,我们的矩阵维度如下:
训练集维度: X = (750,2)
目标维度: Y = (750,1)
维度:(m,nhidden) = (2,6)
维度:(bias vector):(1,nhidden) = (1,6)
维度: (nhidden,noutput)= (6,1)
维度:(bias vector):(1,noutput) = (1,1)
损失函数
我们使用与 Logistic 回归算法相同的损失函数:
对于多类别的分类任务,我们将使用这个函数的通用形式作为损失函数,称之为分类交叉熵函数。
训练
我们将用梯度下降法来训练我们的神经网络,并通过反向传播法来计算所需的偏导数。训练过程主要有以下几个步骤:
1. 初始化参数(即权重量和偏差量)
2. 重复以下过程,直到收敛:
通过网络传播当前输入的批次大小,并计算所有隐藏和输出单元的激活值和输出值。
针对每个参数计算其对损失函数的偏导数
更新参数
前向传播过程
首先,我们计算网络中每个单元的激活值和输出值。为了加速这个过程的实现,我们不会单独为每个输入样本执行此操作,而是通过矢量化对所有样本一次性进行处理。其中:
表示对所有训练样本激活隐层单元的矩阵
表示对所有训练样本输出隐层单位的矩阵
隐层神经元将使用 tanh 函数作为其激活函数:
输出层神经元将使用 sigmoid 函数作为激活函数:
激活值和输出值计算如下(·表示点乘):
反向传播过程
为了计算权重向量的更新值,我们需要计算每个神经元对损失函数的偏导数。这里不会给出这些公式的推导,你会在其他网站上找到很多更好的解释(https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/)。
对于输出神经元,梯度计算如下(矩阵符号):
对于输入和隐层的权重矩阵,梯度计算如下:
权重更新
In [3]:
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import make_circles from sklearn.model_selection import train_test_split np.random.seed(123) % matplotlib inline
数据集
In [4]:
X, y = make_circles(n_samples=1000, factor=0.5, noise=.1) fig = plt.figure(figsize=(8,6))plt.scatter(X[:,0], X[:,1], c=y)plt.xlim([-1.5, 1.5]) plt.ylim([-1.5, 1.5]) plt.title("Dataset") plt.xlabel("First feature") plt.ylabel("Second feature") plt.show()
In [5]:
# reshape targets to get column vector with shape (n_samples, 1) y_true = y[:, np.newaxis] # Split the data into a training and test set X_train, X_test, y_train, y_test = train_test_split(X, y_true) print(f'Shape X_train: {X_train.shape}') print(f'Shape y_train: {y_train.shape}') print(f'Shape X_test: {X_test.shape}') print(f'Shape y_test: {y_test.shape}')
Shape X_train: (750, 2)
Shape y_train: (750, 1)
Shape X_test: (250, 2)
Shape y_test: (250, 1)
Neural Network Class
以下部分实现受益于吴恩达的课程
https://www.coursera.org/learn/neural-networks-deep-learning
class NeuralNet(): def __init__(self, n_inputs, n_outputs, n_hidden): self.n_inputs = n_inputs self.n_outputs = n_outputs self.hidden = n_hidden # Initialize weight matrices and bias vectors self.W_h = np.random.randn(self.n_inputs, self.hidden) self.b_h = np.zeros((1, self.hidden)) self.W_o = np.random.randn(self.hidden, self.n_outputs) self.b_o = np.zeros((1, self.n_outputs)) def sigmoid(self, a): return 1 / (1 + np.exp(-a)) def forward_pass(self, X): """ Propagates the given input X forward through the net. Returns: A_h: matrix with activations of all hidden neurons for all input examples O_h: matrix with outputs of all hidden neurons for all input examples A_o: matrix with activations of all output neurons for all input examples O_o: matrix with outputs of all output neurons for all input examples """ # Compute activations and outputs of hidden units A_h = np.dot(X, self.W_h) + self.b_h O_h = np.tanh(A_h) # Compute activations and outputs of output units A_o = np.dot(O_h, self.W_o) + self.b_o O_o = self.sigmoid(A_o) outputs = { "A_h": A_h, "A_o": A_o, "O_h": O_h, "O_o": O_o, } return outputs def cost(self, y_true, y_predict, n_samples): """ Computes and returns the cost over all examples """ # same cost function as in logistic regression cost = (- 1 / n_samples) * np.sum(y_true * np.log(y_predict) + (1 - y_true) * (np.log(1 - y_predict))) cost = np.squeeze(cost) assert isinstance(cost, float) return cost def backward_pass(self, X, Y, n_samples, outputs): """ Propagates the errors backward through the net. Returns: dW_h: partial derivatives of loss function w.r.t hidden weights db_h: partial derivatives of loss function w.r.t hidden bias dW_o: partial derivatives of loss function w.r.t output weights db_o: partial derivatives of loss function w.r.t output bias """ dA_o = (outputs["O_o"] - Y) dW_o = (1 / n_samples) * np.dot(outputs["O_h"].T, dA_o) db_o = (1 / n_samples) * np.sum(dA_o) dA_h = (np.dot(dA_o, self.W_o.T)) * (1 - np.power(outputs["O_h"], 2)) dW_h = (1 / n_samples) * np.dot(X.T, dA_h) db_h = (1 / n_samples) * np.sum(dA_h) gradients = { "dW_o": dW_o, "db_o": db_o, "dW_h": dW_h, "db_h": db_h, } return gradients def update_weights(self, gradients, eta): """ Updates the model parameters using a fixed learning rate """ self.W_o = self.W_o - eta * gradients["dW_o"] self.W_h = self.W_h - eta * gradients["dW_h"] self.b_o = self.b_o - eta * gradients["db_o"] self.b_h = self.b_h - eta * gradients["db_h"] def train(self, X, y, n_iters=500, eta=0.3): """ Trains the neural net on the given input data """ n_samples, _ = X.shape for i in range(n_iters): outputs = self.forward_pass(X) cost = self.cost(y, outputs["O_o"], n_samples=n_samples) gradients = self.backward_pass(X, y, n_samples, outputs) if i % 100 == 0: print(f'Cost at iteration {i}: {np.round(cost, 4)}') self.update_weights(gradients, eta) def predict(self, X): """ Computes and returns network predictions for given dataset """ outputs = self.forward_pass(X) y_pred = [1 if elem >= 0.5 else 0 for elem in outputs["O_o"]] return np.array(y_pred)[:, np.newaxis]
初始化并训练神经网络
nn = NeuralNet(n_inputs=2, n_hidden=6, n_outputs=1) print("Shape of weight matrices and bias vectors:") print(f'W_h shape: {nn.W_h.shape}') print(f'b_h shape: {nn.b_h.shape}') print(f'W_o shape: {nn.W_o.shape}') print(f'b_o shape: {nn.b_o.shape}') print() print("Training:") nn.train(X_train, y_train, n_iters=2000, eta=0.7)
Shape of weight matrices and bias vectors:
W_h shape: (2, 6)
b_h shape: (1, 6)
W_o shape: (6, 1)
b_o shape: (1, 1)
Training:
Cost at iteration 0: 1.0872
Cost at iteration 100: 0.2723
Cost at iteration 200: 0.1712
Cost at iteration 300: 0.1386
Cost at iteration 400: 0.1208
Cost at iteration 500: 0.1084
Cost at iteration 600: 0.0986
Cost at iteration 700: 0.0907
Cost at iteration 800: 0.0841
Cost at iteration 900: 0.0785
Cost at iteration 1000: 0.0739
Cost at iteration 1100: 0.0699
Cost at iteration 1200: 0.0665
Cost at iteration 1300: 0.0635
Cost at iteration 1400: 0.061
Cost at iteration 1500: 0.0587
Cost at iteration 1600: 0.0566
Cost at iteration 1700: 0.0547
Cost at iteration 1800: 0.0531
Cost at iteration 1900: 0.0515
测试神经网络
n_test_samples, _ = X_test.shape y_predict = nn.predict(X_test) print(f"Classification accuracy on test set: {(np.sum(y_predict == y_test)/n_test_samples)*100} %")
Classification accuracy on test set: 98.4 %
可视化决策边界
X_temp, y_temp = make_circles(n_samples=60000, noise=.5) y_predict_temp = nn.predict(X_temp) y_predict_temp = np.ravel(y_predict_temp)
fig = plt.figure(figsize=(8,12)) ax = fig.add_subplot(2,1,1)plt.scatter(X[:,0], X[:,1], c=y)plt.xlim([-1.5, 1.5]) plt.ylim([-1.5, 1.5]) plt.xlabel("First feature") plt.ylabel("Second feature") plt.title("Training and test set") ax = fig.add_subplot(2,1,2)plt.scatter(X_temp[:,0], X_temp[:,1], c=y_predict_temp)plt.xlim([-1.5, 1.5]) plt.ylim([-1.5, 1.5]) plt.xlabel("First feature") plt.ylabel("Second feature") plt.title("Decision boundary")
Out[11]:Text(0.5,1,'Decision boundary')