AI技术百科
小小程序员
2021-05-12 16:55:02
K-MEANS聚类算法
K-Means聚类算法可能是大家最熟悉的聚类算法。它出现在很多介绍性的数据科学和机器学习课程中。在代码中很容易理解和实现!请看下面的图表。
K-Means聚类
1.首先,我们选择一些类/组来使用并随机地初始化它们各自的中心点。要想知道要使用的类的数量,最好快速地查看一下数据,并尝试识别任何不同的分组。中心点是与每个数据点向量相同长度的向量,在上面的图形中是“X”。
2.每个数据点通过计算点和每个组中心之间的距离进行分类,然后将这个点分类为最接近它的组。
3.基于这些分类点,我们通过取组中所有向量的均值来重新计算组中心。
4.对一组迭代重复这些步骤。你还可以选择随机初始化组中心几次,然后选择那些看起来对它提供了最好结果的来运行。
K-Means聚类算法的优势在于它的速度非常快,因为我们所做的只是计算点和群中心之间的距离;它有一个线性复杂度O(n)。
另一方面,K-Means也有几个缺点。首先,你必须选择有多少组/类。这并不是不重要的事,理想情况下,我们希望它能帮我们解决这些问题,因为它的关键在于从数据中获得一些启示。K-Means也从随机选择的聚类中心开始,因此在不同的算法运行中可能产生不同的聚类结果。因此,结果可能是不可重复的,并且缺乏一致性。其他聚类方法更加一致。
K-Medians是另一种与K-Means有关的聚类算法,除了使用均值的中间值来重新计算组中心点以外,这种方法对离群值的敏感度较低(因为使用中值),但对于较大的数据集来说,它要慢得多,因为在计算中值向量时,每次迭代都需要进行排序。