333浏览
0点赞

前馈神经网络(FeedForward NN )

前馈神经网络(FeedForward NN ) :是一种最简单的神经网络,采用单向多层结构,各神经元分层排列,每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层,各层间没有反馈。前馈网络包括三类节点:■
405浏览
1点赞

神经网络的例子

下面通过车牌自动识别的例子,来解释神经网络。所谓车牌自动识别,就是高速公路的探头拍下车牌照片,计算机识别出照片里的数字。这个例子里面,车牌照片就是输入,车牌号码就是输出,照片的清晰度可以设置权重(w)
390浏览
0点赞

神经网络的运作过程

一个神经网络的搭建,需要满足三个条件。输入和输出权重(w)和阈值(b)多层感知器的结构也就是说,需要事先画出上面出现的那张图。其中,最困难的部分就是确定权重(w)和阈值(b)。目前为止,这两个值都是主观给
396浏览
0点赞

神经网络感知器

历史上,科学家一直希望模拟人的大脑,造出可以思考的机器。人为什么能够思考?科学家发现,原因在于人体的神经网络。1、外部刺激通过神经末梢,转化为电信号,转导到神经细胞(又叫神经元)。2、无数神经元构成神经
1895浏览
3点赞

SOM 自组织映射神经网络

自组织映射(Self-organizing map, SOM)通过学习输入空间中的数据,生成一个低维、离散的映射(Map),从某种程度上也可看成一种降维算法。SOM是一种无监督的人工神经网络。不同于一般神经网络基于损失函数的反向传递来
472浏览
3点赞

用Python实现机器学习算法——简单的神经网络

我们将实现一个简单的神经网络架构,将 2 维的输入向量映射成二进制输出值。我们的神经网络有 2 个输入神经元,含 6 个隐藏神经元隐藏层及 1 个输出神经元。
475浏览
0点赞

感知机(Perceptron)

作为第一代神经网络,感知机是只有一个神经元的计算模型。首先将原始输入矢量转化为特征矢量,再用手写程序定义特征,然后学习如何对每个特征加权得到一个标量,如果标量值高于某一阈值,则认为输入矢量是目标类的一
480浏览
0点赞

循环神经网络( Recurrent Neural Network)

循环神经网络(RNN)有两个强大的属性可以计算任何计算机计算出来的东西:(1)允许存储大量有效信息的分布式隐藏状态(2)用复杂的方式允许更新隐藏状态的非线性动态。RNN强大的计算能力和梯度消失(或爆炸)使其很难训练。通过多层反向传播时,若权重很小,则梯度呈指
450浏览
0点赞

长短期记忆网络(Long/Short Term Memory Network)

HochreiterSchmidhuber(1997年)构建了长短期记忆网络,解决了获取RNN长时间记忆问题,使用乘法逻辑线性单元设计存储单元,只要保持“写入”门打开,信息就会写入并保持在单元中,也可以打开“读取”门从中获取数据
618浏览
0点赞

霍普菲尔德网络(Hopfield Networks)

非线性循环网络有很多种表现方式,较难分析:能达到稳定、震荡或馄饨状态这三种表现形式。Hopfield网络是由有循环连接的二进制阈值单元组成。1982年,约翰·霍普菲尔德发现,如果连接对称,则存在一个全局能量函数,
373浏览
0点赞

玻尔兹曼机(Boltzmann Machine Network)

玻尔兹曼机是一种随机循环神经网络,可以被看作是Hopfield网络的随机生成产物,是最先学习内部representations的神经网络之一。该算法旨在最大限度地提高机器在训练集中分配给二进制矢量的概率的乘积,相当于最大化
411浏览
0点赞

深度自动编码器(Deep Auto-encoders)

该架构提供了两种映射方式,好像是一个做非线性降维非常好的方法,它在训练事例的数量上是线性的(或更好的),而最终编码模型相当紧凑和快速。然而,使用反向传播优化深度自动编码器很困难,若初始权重较小,反向传
411浏览
0点赞

深度信念网络(Deep Belief Network)

反向传播,是人工神经网络计算处理一批数据后每个神经元的误差分布的标准方法,但是也存在一些问题。首先要标注训练数据,但几乎所有数据都没有标注;其次,学习时间不足,这意味着隐藏层数较多的网络较慢;第三,可
488浏览
0点赞

深度残差网络(Deep Residual Network, ResNet)

深度残差网络(Deep Residual Network, ResNet)是一种非常成功的深度学习方法,自2015年底在arXiv上公布以来,在谷歌学术(Google Scholar)上的引用次数已经接近3万次。深度残差收缩网络是ResNet的一种新型改进,后续
310浏览
0点赞
2169浏览
11点赞

卷积神经网络(Convolutional Neural Networks)

卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的创始人是着名的计算机科学家Yann LeCun,目前在Facebook工作,他是第一个通过卷积神经网络在MNIST数据集上解决手写数字问题的人。
2065浏览
17点赞

BP(back propagation)神经网络

BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型:
相关搜索
今日排行
本周排行
本月排行
免费注册体验
联系我们