AI技术百科
555浏览
3点赞
KNN算法(K最近邻算法)详解
K 最近邻的核心数学知识是距离的计算和权重的计算。我们把需要预测的点作为中心点,然后计算其周围一定半径内的已知点距其的距离,挑选前 k 个点,进行投票,这 k 个点中,哪个类别的点多,该预测点就被判定属于哪一
12-10 23:30
1238浏览
1点赞
KNN算法的优缺点
优点:简单,易于理解,无需建模与训练,易于实现;适合对稀有事件进行分类;适合与多分类问题,例如根据基因特征来判断其功能分类,kNN比SVM的表现要好。缺点:惰性算法,内存开销大,对测试样本分类时计算量大,性
12-10 23:29
448浏览
0点赞
KNN算法的流程
KNN算法的流程计算测试数据与各个训练数据之间的距离;按照距离的递增关系进行排序;选取距离最小的K个点;确定前K个点所在类别的出现频率;返回前K个点中出现频率最高的类别作为测试数据的预测分类。下图中给出了KN
12-10 23:28
529浏览
0点赞
什么是k最近邻算法(kNN)
K近邻算法又称KNN,全称是K-Nearest Neighbors算法,它是数据挖掘和机器学习中常用的学习算法,也是机器学习中最简单的分类算法之一。KNN的使用范围很广泛,在样本量足够大的前提条件之下它的准确度非常高。KNN是一
12-06 16:28