AI技术百科
478浏览
0点赞
受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)
受限玻尔兹曼机(Restricted Boltzmann Machine, RBM),是一种简化的特殊的玻尔兹曼机,1986年由Paul Smolensky提出。和BM相比,其隐藏层中的节点之间没有互相连接,其可见节点间也没有连接,因此其计算相对更简单
11-28 10:40
558浏览
0点赞
径向基函数神经网络(Radical Basis Function Neural Network, RBF NN)
径向基函数神经网络(Radical Basis Function Neural Network, RBF NN): 1988 年由 John Moody和Christian J Darken提出了一种网络结构,属于前向型神经网络,理论上可以任意精度逼近任意连续函数,适合解决分类问题
11-28 10:42
473浏览
0点赞
深度神经网络(DNN)
深度神经网络(DNN):使用统计学方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。 简单理解,深度神经网络就是有多个隐藏层的多层感知器网络,根据实际应用情况不同,其形态和大小也都不
11-28 10:44
470浏览
0点赞
卷积神经网络(CNN)
卷积神经网络(CNN): 由Yann LeCun提出并应用在手写字体(MINST)识别上,其实质是一种多层前馈网络,擅长处理图像特别是大图像的处理和识别。
11-28 10:44
498浏览
0点赞
递归神经网络(Recurrent Neural Network, RNN)
前馈神经网络只能单独处理一个的输入,不同的输入之间被认为是相互独立没有联系的,但实际上很多时候输入之间是有序列关系的,需要使用递归神经网络(Recurrent Neural Network, RNN), 也称循环神经网络,其引入了
11-28 10:45
851浏览
1点赞
长短期记忆网络(Long Short-Term Memory, LSTM)
长短期记忆网络(Long Short-Term Memory, LSTM):是一种时间递归神经网络,适合用于处理和预测时间序列中间隔和延迟较长的重要事件。基于LSTM的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别、
11-28 10:46
447浏览
0点赞
自动编码器(AutoEncoder)
自动编码器(AutoEncoder):是人工神经网络的一种,主要用来处理数据的压缩,其数据的压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。原理为训练神经网络,通过捕捉可以代表输入信息的最关键的因素,让
11-28 10:47
429浏览
0点赞
深度信念网结(Deep Belief Nets, DBN)
深度信念网结(Deep Belief Nets, DBN): 或称深度置信网络,神经网络的一种,由多个受限玻尔兹曼机组成。既可以用于非监督学习,类似于一个自编码器,也可以用于监督学习,类似于一个分类器。从非监督学习来讲,其目
11-28 10:47
540浏览
0点赞
生成对抗网结(Generative Adversarial Network, GAN)
生成对抗网结(Generative Adversarial Network, GAN): 由Goodfellow在2014年提出,其核心思想来自于博弈论的纳什均衡”。它包含两个网络模型:一个生成模型和一个判别模型。生成模型捕捉样本数据的分布,判别模型是
11-28 10:48
487浏览
0点赞
循环神经网络(RNN)的原理及实现
在前馈神经网络中,信息的传递是单向的,这种限制虽然使得网络变得更容易学习,但在一定程度上也减弱了神经网络模型的能力。在生物神经网络中,神经元之间的连接关系要复杂的多。前馈神经网络可以看着是一个复杂的函数,每次输入都是独立的,即网络的输出只依赖于当前的
06-30 15:18