AI技术百科
309浏览
0点赞
ARHUD驾车导航技术概览
ARHUD (Augmented Reality Head Up Display),即增强现实与抬头显示的结合,是一种将渲染元素投影在真实世界的技术,也是目前用户理解成本最低的展示方式。HUD功能第一次应用是在二战中,被应用在枪械和战斗机上,80年代初期开始转向民用,90年代初期技术概念被正式提出
06-30 15:35
391浏览
0点赞
CVPR2023最新论文!含语义分割、扩散模型、多模态、预训练、MAE等方向
CVPR 2023 收录的工作中扩散模型、多模态、预训练、MAE相关工作的数量会显著增长。语义分割/Segmentation - 3 篇Delivering Arbitrary-Modal Semantic Segmentation论文/Paper: arxiv.org/pdf/2303.01…代码/Code: NoneConflict-based Cross-View Consistency for Semi-
06-30 15:30
371浏览
0点赞
机器学习中的特征工程
特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。从本质上来讲,特征工程是一个表示和展现数据的过程。在实际工作中,特征工程旨在去除原始数据中的杂质和冗余,设计更高效的特征以刻画求解的问题与预测模型之间的关系
06-30 15:28
232浏览
0点赞
免费部署一个开源大模型 MOSS
2023年初,ChatGPT 人工智能对话模型火爆全球,仅两个月的时间就突破一亿月活用户,成为有史以来应用速度最快的技术之一。ChatGPT 的大热引发了全球科技巨头之间的“军备竞赛”,中国本土的“中国版 ChatGPT ”也随之展开了激烈角逐。在中国多家科技公司中,百度于3月上
06-30 15:00
352浏览
0点赞
AI技术学习方法及相关算法
业内通常将人工智能分类为机器学习、计算机视觉、语音交互和自然语言处理四大领域,机器学习可以理解为是其他三大领域的底层基础,大致可以分为监督学习、非监督学习、强化学习、迁移学习。本文在此基本不涉及公式,尽量以平直易懂的语言讲述这几种机器学习方法及相关算
06-29 12:12
397浏览
0点赞
363浏览
0点赞
Maxout与Dropout
Dropout是一种网络规则化技巧,其实它就是相当于在训练很多个不同的网络结构,尽管如此,推理阶段所有不同结构的参数依然是共享的,因为实际上只有一个网络存在。在机器学习算法中,有一个概念叫做bagging,bagging
12-10 23:07
413浏览
2点赞
机器学习涉及的7个范围
其实,机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。 从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处
12-08 12:46
393浏览
1点赞
神经网络的例子
下面通过车牌自动识别的例子,来解释神经网络。所谓车牌自动识别,就是高速公路的探头拍下车牌照片,计算机识别出照片里的数字。这个例子里面,车牌照片就是输入,车牌号码就是输出,照片的清晰度可以设置权重(w)
11-27 17:43
384浏览
0点赞
神经网络的运作过程
一个神经网络的搭建,需要满足三个条件。输入和输出权重(w)和阈值(b)多层感知器的结构也就是说,需要事先画出上面出现的那张图。其中,最困难的部分就是确定权重(w)和阈值(b)。目前为止,这两个值都是主观给
11-27 17:43
360浏览
0点赞
一个简单的决策模型
单个的感知器构成了一个简单的决策模型,已经可以拿来用了。真实世界中,实际的决策模型则要复杂得多,是由多个感知器组成的多层网络。上图中,底层感知器接收外部输入,做出判断以后,再发出信号,作为上层感知器的
11-27 17:42
382浏览
0点赞
感知器的例子
下面来看一个例子。城里正在举办一年一度的游戏动漫展览,小明拿不定主意,周末要不要去参观。他决定考虑三个因素。天气:周末是否晴天?同伴:能否找到人一起去?价格:门票是否可承受?这就构成一个感知器。上面三
11-27 17:42
386浏览
0点赞
神经网络感知器
历史上,科学家一直希望模拟人的大脑,造出可以思考的机器。人为什么能够思考?科学家发现,原因在于人体的神经网络。1、外部刺激通过神经末梢,转化为电信号,转导到神经细胞(又叫神经元)。2、无数神经元构成神经
11-27 17:40
439浏览
1点赞
人工智能 —— 知识图谱
初学者刚开始学习人工智能时,面对铺天盖地的概念,如,人工智能、机器学习、深度学习、计算机视觉等等,一时间可能就被这些“高深”的名称给唬住了,不知道如何下手。又或者有些同学在学习了很长时间后,问他学习的
11-17 11:59
1823浏览
2点赞
独立同分布(iid,independently identically distribution)
独立同分布(iid,independently identically distribution)在概率统计理论中,指随机过程中,任何时刻的取值都为随机变量,如果这些随机变量服从同一分布,并且互相独立,那么这些随机变量是独立同分布。独立同分
11-02 17:12
665浏览
1点赞
特征分解 Eigendecomposition
特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。N 维非零向量 v 是 N×N 的矩阵
11-02 17:08
729浏览
1点赞
负对数似然 negative log-likelihood
似然函数(likelihood function)在机器学习中,似然函数是一种关于模型中参数的函数。“似然性(likelihood)”和概率(probability)词意相似,但在统计学中它们有着完全不同的含义:概率用于在已知参数的情况下,预测接
11-02 17:02
438浏览
1点赞
分类回归树 CART
分类回归树(CART,Classification And Regression Tree)也属于一种决策树,这里只介绍CART是怎样用于分类的。分类回归树是一棵二叉树,且每个非叶子节点都有两个孩子,所以对于第一棵子树其叶子节点数比非叶子节点数
11-02 16:52
466浏览
0点赞
声学模型 acoustic mode
在这个模块,我们会讨论语音识别引擎里的声学(acoustic)模型。在今天的主流语音识别系统中,声学模型是一个混合(hybrid)模型,它包括用于序列跳转的隐马尔可夫模型(HMM)和根据当前帧来预测状态的深度神经网络。HMM是
11-02 16:49
381浏览
0点赞
规则学习 Rule Learning
规则学习是可对未见示例进行判别的规则,通常是由训练数据集的学习获得,其通常是 IF-THEN 规则,属于非监督学习的一种,常用被归属为分类的一种。规则学习中的规则规则:语义明确,可描述数据分布所隐含的客观规律
11-02 16:46